AI
271 Inhalte
Entdecken Sie unser Archiv zu tiefgehenden Inhalte zum Thema AI.
Die Anzahl von Publikationen zu Computer Vision, Neuro-Linguistischer Programmierung (NLP) oder Reinforcement Learning ist heutzutage gewaltig. Dabei widmen sich die meisten ausschließlich dem Training. Doch oft müssen Data Scientists auch beim Betrieb ihrer Modelle mitwirken. Dafür braucht es einen pragmatischen und unaufwändigen Weg.

Wie findet ein Unternehmen die passenden Expertinnen und Experten im eigenen Haus, wenn es sie für bestimmte Aufgaben schnell braucht? Mit dieser Herausforderung hatte es auch die iteratec GmbH zu tun – und entwickelte deshalb eine KI-basierte Suchmaschine, die das zuverlässige und schnelle Finden von Mitarbeiter-Skills ermöglicht.

Entwickler stehen regelmäßig vor der Frage, wie sie KI-Prozesse verbessern können und welcher Algorithmus für bestimmte Fragestellungen jeweils der passende ist. Ein Praxisbeispiel aus der Logistik zeigt, wie die Suche nach dem richtigen Algorithmus strukturiert erfolgen kann.

Autoencoder sind generative neuronale Netzwerke, die äußerst vielseitig einsetzbar sind. Sie finden unter anderem beim maschinellen Übersetzen Anwendung, bei der Anomalieerkennung oder der Bildbearbeitung. Welche Spezialformen sind für die semantische Segmentierung von Bildern geeignet – wie es etwa beim autonomen Fahren unerlässlich ist?

Ein Gespräch über den Stand der Forschung im internationalen Vergleich, die Frage, wie wichtig die Transparenz von KI-Entscheidungen ist, sowie künftige Einsatzfelder.
