AI
255 Inhalte
Entdecken Sie unser Archiv zu tiefgehenden Inhalte zum Thema AI.
Autoencoder sind generative neuronale Netzwerke, die äußerst vielseitig einsetzbar sind. Sie finden unter anderem beim maschinellen Übersetzen Anwendung, bei der Anomalieerkennung oder der Bildbearbeitung. Welche Spezialformen sind für die semantische Segmentierung von Bildern geeignet – wie es etwa beim autonomen Fahren unerlässlich ist?

Künstliche Intelligenz trifft traditionelle Industrie: In der Stahlproduktion unterliegt der erzeugte Stahl einer kontinuierlichen Qualitätssicherung. Der Grobblechhersteller Dillinger setzt dabei ein auf einem Grafikprozessor laufendes neuronales Netz ein. Es unterstützt die bildanalytische Bewertung der Beschaffenheit des Stahls.

Daten werden immer stärker zu Wirtschaftsgütern, zu strategischen Ressourcen innovativer Geschäftsmodelle. Warum die Unternehmen für das Daten-Sharing Marktplätze brauchen, und was Entwickler über den Telekom Data Intelligence Hub wissen müssen, zeigt der Artikel.
Die sogenannten künstlichen neuronalen Netze bilden die Datenbasis jeder künstlichen Intelligenz. Diese Netze finden ihren Ursprung in der wissenschaftlichen Disziplin der Biologie. Lebewesen entscheiden mithilfe von Erfahrungswerten und „gelernten“ definierten Merkmalen, wie sich ihr Organismus in bestimmten Situationen zu verhalten hat. Auch künstliche neuro- nale Netze sollen mithilfe von immer..
In diesem Artikel wird beschrieben, was unter Testen von Hardware-in-the-Loop (HIL) in einem End-to-End Testszenario (E2E) mit Web, Middleware und Mobile Environment verstanden wird und wie dieses Vorgehen erfolgreich in eine Agile Tool Chain integriert wird, um automatische Testreihen für das Human Machine Interface (HMI) eines Fahrzeugs durchzuführen.