Das Wissensportal für IT-Professionals. Entdecke die Tiefe und Breite unseres IT-Contents in exklusiven Themenchannels und Magazinmarken.

heise conferences GmbH

(vormals SIGS DATACOM GmbH)

Lindlaustraße 2c, 53842 Troisdorf

Tel: +49 (0)2241/2341-100

kundenservice@sigs-datacom.de

AI

276 Inhalte
Entdecken Sie unser Archiv zu tiefgehenden Inhalte zum Thema AI.
Wenn Menschen die Entscheidungen von Künstlicher Intelligenz nicht verstehen und nicht nachvollziehen können, vertrauen sie ihnen auch nicht – sei es bei der Bewilligung eines Kreditantrags oder beim autonomen Fahren. Die Entscheidungen und Handlungen der Modelle müssen deshalb transparent und erklärbar sein.
Das Blackbox-Problem: Künstlicher Intelligenz vertrauen
Autoencoder sind generative neuronale Netzwerke, die äußerst vielseitig einsetzbar sind. Sie finden unter anderem beim maschinellen Übersetzen Anwendung, bei der Anomalieerkennung oder der Bildbearbeitung. Welche Spezialformen sind für die semantische Segmentierung von Bildern geeignet – wie es etwa beim autonomen Fahren unerlässlich ist?
Autoencoder – eine vielseitig einsetzbare Architektur
Ein Gespräch über den Stand der Forschung im internationalen Vergleich, die Frage, wie wichtig die Transparenz von KI-Entscheidungen ist, sowie künftige Einsatzfelder.
„Menschen und KI werden enger zusammenarbeiten“
Daten werden immer stärker zu Wirtschaftsgütern, zu strategischen Ressourcen innovativer Geschäftsmodelle. Warum die Unternehmen für das Daten-Sharing Marktplätze brauchen, und was Entwickler über den Telekom Data Intelligence Hub wissen müssen, zeigt der Artikel.
Datendrehscheibe mit KI-Werkstatt
Die sogenannten künstlichen neuronalen Netze bilden die Datenbasis jeder künstlichen Intelligenz. Diese Netze finden ihren Ursprung in der wissenschaftlichen Disziplin der Biologie. Lebewesen entscheiden mithilfe von Erfahrungswerten und „gelernten“ definierten Merkmalen, wie sich ihr Organismus in bestimmten Situationen zu verhalten hat. Auch künstliche neuro- nale Netze sollen mithilfe von immer..
Unittests für  ML-Code