Das Wissensportal für IT-Professionals. Entdecke die Tiefe und Breite unseres IT-Contents in exklusiven Themenchannels und Magazinmarken.

heise conferences GmbH

(vormals SIGS DATACOM GmbH)

Lindlaustraße 2c, 53842 Troisdorf

Tel: +49 (0)2241/2341-100

kundenservice@sigs-datacom.de

AI

281 Inhalte
Entdecken Sie unser Archiv zu tiefgehenden Inhalte zum Thema AI.
Frameworks für das Machine Learning (ML) wurden ursprünglich für numerische Mathematik, Matrix-Berechnungen oder Statistik optimiert. Mit Deep Learning stieg dann der Bedarf nach darauf optimierten und spezialisierten Frameworks. Immer häufiger kommen deshalb heute Frameworks wie Apache MXNet (Incubating) und Gluon zum Einsatz.
Mehr Produktivität für die Machine Learning-Entwicklung
Ein Gespräch über den Stand der Forschung im internationalen Vergleich, die Frage, wie wichtig die Transparenz von KI-Entscheidungen ist, sowie künftige Einsatzfelder.
„Menschen und KI werden enger zusammenarbeiten“
Entwickler stehen regelmäßig vor der Frage, wie sie KI-Prozesse verbessern können und welcher Algorithmus für bestimmte Fragestellungen jeweils der passende ist. Ein Praxisbeispiel aus der Logistik zeigt, wie die Suche nach dem richtigen Algorithmus strukturiert erfolgen kann.
Auf der Suche nach dem passenden Algorithmus
Wie findet ein Unternehmen die passenden Expertinnen und Experten im eigenen Haus, wenn es sie für bestimmte Aufgaben schnell braucht? Mit dieser Herausforderung hatte es auch die iteratec GmbH zu tun – und entwickelte deshalb eine KI-basierte Suchmaschine, die das zuverlässige und schnelle Finden von Mitarbeiter-Skills ermöglicht.
KI als Basis für die intelligente Suche nach Mitarbeiterskills
Wenn Menschen die Entscheidungen von Künstlicher Intelligenz nicht verstehen und nicht nachvollziehen können, vertrauen sie ihnen auch nicht – sei es bei der Bewilligung eines Kreditantrags oder beim autonomen Fahren. Die Entscheidungen und Handlungen der Modelle müssen deshalb transparent und erklärbar sein.
Das Blackbox-Problem: Künstlicher Intelligenz vertrauen